Properties

Label 6.6.371293.1-53.2-a2
Base field \(\Q(\zeta_{13})^+\)
Conductor norm \( 53 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\zeta_{13})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -3, 6, 4, -5, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([-1, -3, 6, 4, -5, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 6, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}+a^{4}-4a^{3}-3a^{2}+2a\right){x}{y}+\left(a^{5}+a^{4}-4a^{3}-3a^{2}+2a+1\right){y}={x}^{3}+\left(a^{5}+a^{4}-4a^{3}-4a^{2}+2a+1\right){x}^{2}+\left(2a^{5}+a^{4}-7a^{3}-4a^{2}+3a+1\right){x}+2a^{5}+a^{4}-7a^{3}-3a^{2}+4a+1\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,2,-3,-4,1,1]),K([1,2,-4,-4,1,1]),K([1,2,-3,-4,1,1]),K([1,3,-4,-7,1,2]),K([1,4,-3,-7,1,2])])
 
Copy content gp:E = ellinit([Polrev([0,2,-3,-4,1,1]),Polrev([1,2,-4,-4,1,1]),Polrev([1,2,-3,-4,1,1]),Polrev([1,3,-4,-7,1,2]),Polrev([1,4,-3,-7,1,2])], K);
 
Copy content magma:E := EllipticCurve([K![0,2,-3,-4,1,1],K![1,2,-4,-4,1,1],K![1,2,-3,-4,1,1],K![1,3,-4,-7,1,2],K![1,4,-3,-7,1,2]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(a^{5} + a^{4} - 2 a^{3} - a^{2} : 5 a^{5} + 4 a^{4} - 15 a^{3} - 8 a^{2} + 8 a + 2 : 1\right)$$0.0012791912557583409003467950630334646415$$\infty$

Invariants

Conductor: $\frak{N}$ = \((2a^3-a^2-6a+1)\) = \((2a^3-a^2-6a+1)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 53 \) = \(53\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-2a^5-3a^4+5a^3+12a^2+8a-5$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-2a^5-3a^4+5a^3+12a^2+8a-5)\) = \((2a^3-a^2-6a+1)^{3}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( -148877 \) = \(-53^{3}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( -\frac{7340797392}{148877} a^{5} + \frac{20168559723}{148877} a^{4} + \frac{865808613}{148877} a^{3} - \frac{30080813866}{148877} a^{2} + \frac{9874050146}{148877} a + \frac{3817528150}{148877} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.0012791912557583409003467950630334646415 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 0.0076751475345500454020807703782007878490000 \)
Global period: $\Omega(E/K)$ \( 60162.441045792087048848477885082004309 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 3 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 2.27340 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}2.273400000 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 60162.441046 \cdot 0.007675 \cdot 3 } { {1^2 \cdot 609.338166} } \\ & \approx 2.273395811 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2a^3-a^2-6a+1)\) \(53\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 53.2-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.